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Organization of Complex Networks without Multiple Connections
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(Dated:)

We find a new structural feature of equilibrium complex random networks without multiple and
self-connections. We show that if the number of connections is sufficiently high and the degree
distribution is slowly decreasing, these networks contain a core of about N2/3 highly interconnected
vertices, where N is the number of vertices in a network. At the birth point of the core, we obtain
the size-dependent cut-off of the fat-tailed distribution of the number of connections and find that
its position differs from earlier estimates.

PACS numbers: 05.50.+q, 05.10.-a, 87.18.Sn

Introduction.—Real-world networks are based on more
complex architectures than the classical random graphs
which have the “trivial” Poisson distribution of connec-
tions [1, 2]. In this sense, the real networks are complex.
Equilibrium models [3, 4, 5, 6] provide one with a conve-
nient tool for studying the architectures of the complex
networks. The problem of the structural organization of
an equilibrium random graph without multiple connec-
tions is among the basic problems of the statistical me-
chanics of networks. The point is that the theory of an
equilibrium random network with multiple connections
[3, 5] can be reduced to the basic non-network problem
of the distribution of balls among boxes—“the balls–in–
boxes model” or, as it is also called, the backgammon
model [7]. In contrast, the problem of the network with-
out multiple connections is irreducible to simple non-
network problems. The difficulty is that the introduced
constraint complicates the calculation of the partition
function of the statistical ensemble of networks. Further-
more, the strong difference from the multiple-connection
case can be found only for size-dependent quantities,
which demands heavy analytical work, while intuitive ar-
guments are unreliable.

Due to these difficulties, the problem remained un-
solved up to now. To describe the structure of the net-
work without multiple connections, intuitive arguments
[8] and simulations [9] were used. Also, the generation of
degree–degree correlations in simple models of networks
of this kind was studied [10, 11, 12] (degree is the number
of connections of a vertex).

In the present Letter, we report the solution of this
long-standing problem. In the framework of a strict sta-
tistical mechanics approach, we describe the equilibrium
ensemble of networks without multiple connections where
vertices are statistically independent. We find that the
complex architectures of these networks markedly differ
from those for networks with multiple connections. We
show that at sufficiently high densities of connections—
above a critical value, the networks contain a compact
core of Nh(N), constN1/2 < Nh(N) < constN2/3,
highly interconnected vertices [see Fig. 1], where N is
the number of vertices in a network. In particular, in

the networks with slowly decreasing degree distributions,
Nh ∼ N2/3. This core is a previously unknown detail of
the structure of complex networks. We find the form
of the degree distribution at the critical point and obtain
the position of its size-dependent cut-off, which turns out
to be different from an existing estimate [8]. In this Let-
ter we present and explain our results and outline the
derivation. The detailed solution will be published else-
where.

The ensembles.—Following graph theory, we use the
standard terms “multiple graphs” and “simple graphs”
for the graphs with and without multiple edges and loops
of length 1, respectively [13]. The equivalent terms are
non-Mayer and Mayer graphs, respectively [5]. The term
“random graph” means a statistical ensemble of graphs:
a set of graphs with their statistical weights. Each graph
g, a member of a statistical ensemble G, is described by
its adjacency matrix with elements gij . In simple graphs,
gii = 0 and gij = 0, 1 for i 6= j, while in multiple graphs,
gii = 0, 2, 4, . . . and gij = 0, 1, 2, . . . for i 6= j. The ver-

tex degree is qi ≡
∑N

j=1 gij (in our ensembles all graphs

have equal numbers of vertices, N). We consider sparse

=N~

~N 2/3

FIG. 1: Schematic view of the structure of a network without
multiple connections if its vertex mean degree exceeds a criti-
cal value and the degree distribution shows a slow decay. The
compact core consists of about N2/3 highly interconnected
vertices [for a more precise result, see Eq. (4)]. The rest, less
connected vertices are shown by a bubble. The typical degree
of the vertex in the core is about N1/3. The number of in-
terconnections in the core (as well as the number of outgoing
edges) is a finite fraction of all edges. In a similar situation,
in the multiple network, a finite fraction of all edges are at-
tached to a single hub which has numerous loops of length
1.
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networks, where the mean degree is finite in the limit of
large N [14].

In our approach, a random network is a stationary
state of an evolving ensemble. The evolution of the en-
semble (i.e., transitions between its members—graphs)
is due to the processes of reconnection/addition/removal
edges. These processes are governed, e.g., by rules of
preferential linking [15], where vertices for linking are
selected with probabilities proportional to a function of
their degrees—a preference function f(q).

The grand canonical ensemble of networks with statis-
tically independent vertices is more convenient for ana-
lytical treatment but does not exist in many actual situ-
ations. Its members are all possible graphs (with a given
number of vertices) taken with the following statistical
weights [3, 5]:

PGC(g) = (λN)−L(g)
N
∏

i=1

p(qi)
1

gii!!

∏

i<j

1

gij !
, (1)

where the parameter λ controls the state of the ensemble
and is related to the chemical potential (and the fugac-
ity) of edges, L(g) is the number of edges in a graph g,

and p(q) =
∏q−1

r=0 f(r). We introduce Πc(q) ≡ p(q)/q!,
which has a meaning of the degree distribution of the
infinite network at the critical point (see below), and its
Z-transform Φ(x) =

∑∞
q=0 Πc(q)x

q . Note that this and
the next formulas for statistical weights of ensembles are
valid both for simple and multiple graphs. The partition
function ZGC of the grand canonical ensemble is the sum
of the statistical weights (1) over all possible graphs with
a given number of vertices.

The canonical ensemble of networks with statistically
independent vertices is meaningful in a far wider range of
situations than the grand canonical one. The members
of the canonical ensemble are all possible graphs with
a given number L of edges (and a given number of ver-
tices), GC . (Note that GC is a finite set.) Their statistical
weights are

PC(g) = N−L
N
∏

i=1

p(qi)

gii!!

∏

i<j

1

gij !
= λLPGC(g) . (2)

The partition function ZC of the canonical ensemble is
the sum of the statistical weights (2) over graphs belong-
ing to GC . The partition functions of the ensembles are
related to each other:

ZC(N, L, {p(q)}) =

∮

dλ

2πi
λL−1ZGC(N, λ, {p(q)}) . (3)

We have obtained the leading asymptotics of the parti-
tion function of the canonical ensemble of large simple
graphs in a compact form. The analysis of this function
readily leads to the following results.

Results.—We have found that if the mean degree q
exceeds a critical value qc =

∑∞
q=0 qΠc(q), the highly

interconnected core emerges in the simple graph. This
core contains

Nh =
N(q − qc)

Q(q)
∼ N2/3 ln−1/3N (4)

vertices with a typical degree Q ∼ N1/3 ln1/3N , if Πc(q)
decreases with q slower than any stretched exponential
function. A finite fraction of the total number of edges
in the network turns out to be inside of the core. Also, a
finite fraction of all edges connect the core vertices to the
rest weakly connected vertices. In contrast, in multiple
networks with q > qc, N(q − qc) edges are connected to
a single hub—condensed on it quite similarly to conden-
sation in the backgammon model [7]. A finite fraction of
these edges form numerous loops of length 1.

These details of the structure of the core are obtained
from the analysis of the degree distributions. At q < qc,
in both the simple and multiple networks, the degree dis-
tributions are (exponentially) rapidly decreasing for any
preference function [3, 5], and we do not discuss this non-
interesting range. In contrast, at q ≥ qc, the degree dis-
tributions have a complex form. In particular, if Πc(q)
decreases slower than any stretched exponential depen-
dence, the degree distribution of a simple graph is given
by the following expression:

Π(q) = Πc(q)B
(q/Q)−

1
2 (q/Q)2

(5)

with

B =
(q − qc)

2

πQ4 Π2
c(Q)

ln

[

q − qc

Q2 Πc(Q)

]

, (6)

P(q)

(b)

2Lex

P(q)

Q

(a)

q

q

multiple

simple

FIG. 2: Schematic plots of the degree distributions of the
equilibrium networks without (a) and with (b) multiple con-
nections in a phase where the mean degree q exceeds the criti-
cal value qc. In simple terms, the degree distributions contain
two contributions. The first one coincides with the degree
distribution at the critical point, qc. The second contribu-
tion is a peak due to the highly interconnected core vertices
of a typical degree Q ∼ N1/3 in the simple network (a) or a
peak due to a single vertex attracting a finite fraction of all
connections in the multiple network (b). Lex = N(q − qc).
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where the asymptotic expression for the characteristic
degree Q = Q(q, N) is

Q =

(

2Nq2

q − qc

)1/3
∣

∣

∣

∣

∣

ln

{

(Nq2)2/3

(q − qc)5/3
Πc

[

(

Nq2

q − qc

)1/3
]}
∣

∣

∣

∣

∣

1/3

.

(7)
Formula (5) is valid above qc in the range of parame-
ters where the arguments of the logarithm and Πc in
relation (7) are much greater than 1. We find that

Q ∼ N1/3 ln1/3 N and so B in formula (5) is a (positive)
power of N . This results in a narrow peak of relative
width δq/Q ∼ 1/ lnN ≪ 1. The resulting degree dis-
tribution (5) is schematically shown in Fig. 2(a). The
presence of the peak around Q, where the area under
the peak is Nh/N , indicates that in the simple networks,
there is a core of Nh highly interconnected vertices.

For comparison, we obtained the degree distribution
of the multiple network above qc. This distribution is
schematically shown in Fig. 2(b). The distribution con-
tains the (1 − 1/N) contribution of normal vertices and
a narrow peak of weight 1/N at the degree 2Lex =
2N(q − qc), which corresponds to the condensation of
the corresponding finite fraction of edges on a single ver-
tex. Lex is the number of excess edges compared to the
number of edges at the critical point qc.

The form of the degree distributions depends on details
of the preference function. In particular, if f(q) ∼= q +
1 − γ as q → ∞, the critical state degree distribution
is power-law, Πc(q) ∼ q−γ , i.e., with divergent higher
moments. If f(q) grows slower, then all the moments of
the critical degree distribution converge. At the critical
point q = qc, the degree distribution of the network is
equal to Πc(q) modified by finite-size effects. At this
point, in the simple graphs with with a convergent second
moment m2c =

∑

q q2Πc(q) < ∞,

Π(q, N) = Πc(q) exp

[

−
1

2N

(

1

m2c − q2
c

+
m2c

q2
c

)

q2

]

. (8)

At the same point, in the simple networks with power-
law Πc(q) ∼= Aq−γ , 2 < γ < 3, which corresponds to
m2c = ∞, we find

Π(q, N)=Πc(q) exp

{

−

[

A

4q2
cN

Γ

(

3 − γ

2

)]2/(5−γ)

q2

}

. (9)

Relations (8) and (9) demonstrate a Gaussian size-
dependent cutoff of the degree distribution. If m2c < ∞
(in particular, if in a scale-free network γ > 3), then the
cutoff degree is qcut ∼ N1/2. This square-root law fails if
m2c = ∞, i.e., in particular, when exponent 2 < γ < 3.
In the simple networks with a power-law Πc(q), we have

qcut(N) ∼ N1/2 if γ > 3 ,

qcut(N) ∼ N1/(5−γ) if 2 < γ ≤ 3 .
(10)

We emphasize the difference from the multiple networks,
where the cutoff degree is qcut ∼ N1/2 for both the con-
vergent and divergent m2c.

Outline of derivations.—It turns out that the grand
canonical ensemble exists only in networks with ex-
tremely rapidly decreasing degree distributions. Conse-
quently, we must find the partition function of the canon-
ical ensemble. However, as is usual, it is the grand canon-
ical ensemble that admits a convenient analytical consid-
eration. So, first we derive the partition function of the
grand canonical ensemble of simple graphs and then, by
substituting this result into relation (3), obtain the par-
tition function of the canonical ensemble.

For our purposes, it is convenient to use the inverse
Laplace transform of the Ψ(z) function:

Ψ(z) =

∫ +i∞

−i∞

dx

2πi
e−zxΦ(x) , (11)

which, at large z, coincides with Πc(z)e−z if Πc(z) decays
slowly enough. In terms of this function, the partition
function of the canonical ensembles both of the simple
and multiple graphs is

ZGC(N, λ) =

∫

dN
z

N
∏

i=1

Ψ(zi) exp[fN (λ, z)] . (12)

For the multiple graph ensemble, fN (λ, z) =
∑N

i,j=1 zizj/(2Nλ). For the ensemble of simple graphs,
we use the following idea—the key point of this Letter.
We substitute the exact function

fN(λ, z) =
1

2

N
∑

i6=j=1

ln
(

1 +
zizj

Nλ

)

(13)

by the asymptotically exact one:

1

2Nλ

(

N
∑

i=1

zi

)2

−
1

2Nλ

N
∑

i=1

z2
i −

1

(2Nλ)2

(

N
∑

i=1

z2
i

)2

, (14)

which allows a convenient analytical consideration. The
reasons to truncate the expansion are as follows: (i) The
contributions of simple graphs remain unchanged. (ii)
The contributions of graphs with single 1-loops on ver-
tices remain zero [note

∑

i6=j in formula (13)]. (iii) The
contributions of graphs with double edge connections re-
main zero. (iv) Graphs with multiple loops of length 1 on
a vertex and graphs with triple, quadruple, etc. connec-
tions still contribute to the partition function. However,
this contribution is negligible. Indeed, the contribution
of any subsequent term in expansion (14) to the partition
function Z may be estimated as z2

0/N times the contribu-
tion of the preceding term. Here, z0 is the characteristic
value of the integration variables zi; z0 ∼ 1 in the “nor-
mal” phase, and z0 ∼ Q ∼ N1/3 in the phase with a
core.

Using the function (14) allows us to arrive at the fol-
lowing asymptotic form of the partition function:

ZGC(N, λ) =
1

πi

(

Nλ

2

)3/2∫ ∞

−∞

dx

∫ +i∞

−i∞

dy

×e−(Nλx2/2)+(Nλy−1)2/4 ΦN
1 (x, y) , (15)
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where

Φ1(x, y) =

∫ ∞

−∞

dz exz−yz2/2 Ψ(z) . (16)

After substitution of expression (15) into relation (3), the
partition function of the canonical ensemble at large N is
calculated by using the saddle point approximation with
respect to all three integration variables. Finally, using
the relation Π(q) = N−1δlnZC(N, L)/ δln Πc(q) leads to
the degree distribution.

Interpretation.—Let us compare our result for the size
of the core with characteristic size scales of highly con-
nected graphs with ∼ N edges. These networks have two
characteristic sizes: (i) A fully connected simple graph
consists of Nf(N) ∼ N1/2 vertices. (ii) A multiple ran-
dom graph with, on average, one double connection per
vertex consists of N1(N) ∼ N2/3 vertices. Indeed, the
typical degree of a vertex in this network is Q ∼ N/N1.
The probability that a vertex has one double edge must
be compared to 1, i.e., (Q/N)Q2 ∼ 1. Here Q/N is
the probability that a given pair of edges of a vertex
forms a double connections. This probability is multi-
plied by the total number of edge pairs of the vertex,
Q(Q − 1)/2 ∼ Q2. So we indeed have N2/N3

1 ∼ 1 and
N1 ∼ N2/3.

Our results show that in the networks with slowly de-
creasing degree distributions, the core is far less dense
than the corresponding fully connected graph. Its size
Nh(N) and structure are close to those of the multiple
random graph with one double connection per vertex.
We also studied a core in networks with a stretched ex-
ponential degree distribution. In this case, the core is
more dense, with Nh(N) in the range between those two
scales, constN1/2 < Nh(N) < constN2/3.

Discussion and conclusions.—Several points should be
emphasized.

(i) We considered homogeneous networks. Condensa-
tion of edges in inhomogeneous networks, e.g., in net-
works where the preference function depends on individ-
ual properties of vertices and not only on degree, is a
different problem [16].

(ii) The cutoff degree ∼ N1/(5−γ) found at 2 < γ ≤ 3
differs from the earlier estimate N1/2 which was sup-
ported by heuristic arguments [8]. One may show, how-
ever, that it was actually an upper estimate.

(iii) An empirical researcher usually studies a random
network by using only one member of a statistical ensem-
ble. Therefore, he cannot observe the high degree part
of the degree distribution, where, in total, less than one
vertex occurs. For a power-law degree distribution this
condition leads to an upper observable degree ∼ N1/(γ−1)

[17]. This restriction is irrelevant at 2 < γ ≤ 3, where the
cutoff degree ∼ N1/(5−γ) (10) is smaller than N1/(γ−1).
However, it hinders the observation of the N1/2 cutoff at
γ > 3, where N1/(γ−1) is smaller than N1/2 [8, 9].

(iv) One may forbid only loops of length 1 in a network,
still allowing multiple edges. Then, instead of the core
of Nh ≫ 1 vertices we arrive at the condensation of a
finite fraction of edges on a pair of vertices with a huge
multiplicity of the interconnection.

In summary, we have described the organization of
random networks without multiple connections. A new
structural feature of complex networks—a highly inter-
connected compact core—has been revealed. The pro-
posed strict statistical mechanics approach may be gen-
eralized to networks with various correlations.
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